资源类型

期刊论文 332

年份

2024 1

2023 30

2022 28

2021 22

2020 26

2019 21

2018 28

2017 22

2016 19

2015 20

2014 16

2013 12

2012 13

2011 9

2010 10

2009 8

2008 13

2007 12

2006 3

2005 2

展开 ︾

关键词

可持续发展 3

政策建议 3

智慧环保 3

“一带一路” 2

互联网+ 2

产业 2

关键技术 2

城市河流 2

工程水压爆破 2

战略 2

技术创新 2

环境保护 2

环境影响 2

环境污染 2

环境管理 2

节能 2

节能环保 2

1T/2H-MoS2 1

GDP年增长率 1

展开 ︾

检索范围:

排序: 展示方式:

Applications of hollow nanomaterials in environmental remediation and monitoring: A review

Yuankai ZHANG,Zhijiang HE,Hongchen WANG,Lu QI,Guohua LIU,Xiaojun ZHANG

《环境科学与工程前沿(英文)》 2015年 第9卷 第5期   页码 770-783 doi: 10.1007/s11783-015-0811-0

摘要: Hollow nanomaterials have attracted significant attention because of their high chemical and thermal stability, high specific surface area, high porosity, low density, and good biocompatibility. These state-of-the-art nanomaterials have been shown to efficiently adsorb heavy metals, and volatile hazardous substances, photodegrade persistent organic pollutants, and other compounds, and inactivate bacteria. Such properties have enabled the use of these materials for environmental remediation, such as in water/wastewater treatment, soil remediation, air purification, and substance monitoring, etc. Hollow nanomaterials showed higher photocatalytic activity than those without hollow structure owing to their high active surface area, reduced diffusion resistance, and improved accessibility. And, the Doping method could improve the photocatalytic performance of hollow nanomaterials further under visible light. Moreover, the synthetic mechanisms and methods of these materials are important because their size and morphology help to determine their precise properties. This article reviews the environmental applications and potential risks of these materials, in addition to their syntheses. Finally, an outlook into the development of these materials is provided.

关键词: hollow nanomaterials     environmental remediation     nanotechnology     nanostructures     morphology    

Property-performance relationship of core-shell structured black TiO photocatalyst for environmentalremediation

《环境科学与工程前沿(英文)》 2023年 第17卷 第9期 doi: 10.1007/s11783-023-1711-3

摘要:

● Properties and performance relationship of CSBT photocatalyst were investigated.

关键词: Black TiO2     Core-shell structure     Property-performance relationship     Agro-industrial effluent     Environmental remediation    

Review on design and evaluation of environmental photocatalysts

Xin Li, Jun Xie, Chuanjia Jiang, Jiaguo Yu, Pengyi Zhang

《环境科学与工程前沿(英文)》 2018年 第12卷 第5期 doi: 10.1007/s11783-018-1076-1

摘要:

Fundamentals on the photocatalytic degradation were systematically summarized.

Charge carrier dynamics for the photocatalytic degradation were reviewed.

Adsorption and photodegradation kinetics of reactants were highlighted.

The mechanism aspects, including O2 reduction, reactive oxidation species and key intermediates were also addressed.

Selectivity and stability of semiconductors for photodegradation were clarified.

关键词: Photocatalytic degradation     Environmental remediation     Charge carrier dynamics     Reactive oxygen species     O2 reduction    

Hydrophilic modification of poly(aryl sulfone) membrane materials toward highly-efficient environmentalremediation

《化学科学与工程前沿(英文)》 2022年 第16卷 第5期   页码 614-633 doi: 10.1007/s11705-021-2115-1

摘要: Poly(aryl sulfone) as a typical membrane material has been widely used due to excellent mechanical, chemical and thermal stability. However, the inherent hydrophobicity of poly(aryl sulfone) based membranes bears with the fouling issue during applications, which makes the membrane tending to adsorb contaminants on the surface so as to result in decreased separation performance and lifetime. In this critical review, we give a comprehensive overview on characterizations of hydrophilic membrane and diverse hydrophilic modification approaches of poly(aryl sulfone) membranes, predominantly including bulky, blending and surface modification technology. The discussions on the different modification methods have been provided in-depth. Besides, focusing on modification methods and performance of modified membranes, the related mechanisms for the performance enhancement are discussed too. At last, the perspectives are provided to guide the future directions to develop novel technology to manipulate the hydrophilicity of poly(aryl sulfone) membranes toward diverse practical and multi-functional applications.

关键词: poly(aryl sulfone)     membrane separations     modification     hydrophilicity     water treatment    

Optimizing iodine capture performance by metal–organic framework containing with bipyridine units

《化学科学与工程前沿(英文)》 2023年 第17卷 第4期   页码 395-403 doi: 10.1007/s11705-022-2218-3

摘要: Radioactive iodine exhibits medical values in radiology, but its excessive emissions can cause environmental pollution. Thus, the capture of radioiodine poses significant engineering for the environment and medical radiology. The adsorptive capture of radioactive iodine by metal–organic frameworks (MOFs) has risen to prominence. In this work, a Th-based MOF (denoted as Th-BPYDC) was structurally designed and synthesized, consisting of [Th63-O)43-OH)4(H2O)6]12+ clusters, abundant bipyridine units, and large cavities that allowed guest molecules diffusion and transmission. Th-BPYDC exhibited the uptake capacities of 2.23 g·g−1 and 312.18 mg·g−1 towards I2 vapor and I2 dissolved in cyclohexane, respectively, surpassing its corresponding analogue Th-UiO-67. The bipyridine units boosted the adsorption performance, and Th-BPYDC showed good reusability with high stability. Our work thus opened a new way for the synthesis of MOFs to capture radioactive iodine.

关键词: metal–organic framework     iodine     adsorption     nuclear waste     environmental remediation    

Reactivity of Pyrogenic Carbonaceous Matter (PCM) in mediating environmental reactions: Current knowledge

Wenqing Xu, Mark L. Segall, Zhao Li

《环境科学与工程前沿(英文)》 2020年 第14卷 第5期 doi: 10.1007/s11783-020-1265-6

摘要: Abstract • Pyrogenic Carbonaceous Matter (PCM) promote both chemical and microbial synergies. • Discussion of PCM-enhanced abiotic transformation pathways of organic pollutants. • Conjugated microporous polymers (CMPs) can mimic the performance of PCM. • CMPs offer a platform that allows for systematic variation of individual properties. Pyrogenic Carbonaceous matter (PCM; e.g., black carbon, biochar, and activated carbon) are solid residues from incomplete combustion of fossil fuel or biomass. They are traditionally viewed as inert adsorbents for sequestering contaminants from the aqueous phase or providing surfaces for microbes to grow. In this account, we reviewed the recently discovered reactivity of PCM in promoting both chemical and microbial synergies that are important in pollutant transformation, biogeochemical processes of redox-active elements, and climate change mitigation with respect to the interaction between biochar and nitrous oxide (N2O). Moreover, we focused on our group’s work in the PCM-enhanced abiotic transformation of nitrogenous and halogenated pollutants and conducted in-depth analysis of the reaction pathways. To understand what properties of PCM confer its reactivity, our group pioneered the use of PCM-like polymers, namely conjugated microporous polymers (CMPs), to mimic the performance of PCM. This approach allows for the controlled incorporation of specific surface properties (e.g., quinones) into the polymer network during the polymer synthesis. As a result, the relationship between specific characteristics of PCM and its reactivity in facilitating the decay of a model pollutant was systematically studied in our group’s work. The findings summarized in this account help us to better understand an overlooked environmental process where PCM synergistically interacts with various environmental reagents such as hydrogen sulfide and water. Moreover, the knowledge gained in these studies could inform the design of a new generation of reactive carbonaceous materials with tailored properties that are highly efficient in contaminant removal.

关键词: pyrogenic carbonaceous matter     Conjugated microporous polymer     remediation     Biochar     Hydrolysis     Pollutant degradation    

Photo-induced surface frustrated Lewis pairs for promoted photocatalytic decomposition of perfluorooctanoic acid

《环境科学与工程前沿(英文)》 2023年 第17卷 第1期 doi: 10.1007/s11783-023-1603-6

摘要:

● Terminal carboxylate group activation is PFOA degradation’s rate-limiting step.

关键词: Heterogeneous photocatalysis     Surface frustrated Lewis pairs     Perfluorooctanoic acid     Defluorination efficiency     Environmental remediation    

An emerging market for groundwater remediation in China: Policies, statistics, and future outlook

Deyi Hou, Guanghe Li, Paul Nathanail

《环境科学与工程前沿(英文)》 2018年 第12卷 第1期 doi: 10.1007/s11783-018-1027-x

摘要: There is a rapidly emerging and potentially huge market for the remediation of contaminated groundwater in China. The Chinese government published a Water Action Plan in April 2015, a Soil Action Plan in May 2016, and a draft Soil Pollution Prevention and Control Law in June 2017. All of these new policies and regulations put pressures on local governments and contaminated site owners, obliging them to conduct site investigation and to cleanup contaminated groundwater. The Chinese population in northern regions heavily depend on groundwater, with nearly 70% of water supply coming from aquifer sources in the Beijing-Tianjin-Hebei region. However, poor groundwater quality due to natural geochemical background and anthropogeic pollution is a serious concern, with poor or very poor quality water observed in nearly 80% of groundwater monitoring wells in 17 northern provinces. Shallow groundwater in many areas has been contaminated by toxic pollutants such as heavy metals and chlorinated organic compounds. There is an urgent need to better understand the situation and to conduct groundwater remediation at contaminated sites. The Chinese government is investing heavily in the research and development for groundwater remediation, which is expected to greatly add to the quality and quantity of groundwater remediation projects in the near future.

关键词: Groundwater pollution     Contaminated land     Groundwater remediation     Emerging market    

Mitigation and remediation technologies for organic contaminated soils

Lizhong ZHU, Li LU, Dong ZHANG

《环境科学与工程前沿(英文)》 2010年 第4卷 第4期   页码 373-386 doi: 10.1007/s11783-010-0253-7

摘要: Organic contaminated soils have become a widespread environmental problem, which may lead to a great threat to the quality of agricultural production and to human health. Physical, chemical, and biological technologies have been employed for the mitigation and remediation of organic contaminated soils. This paper reviews the progress of mitigation and remediation technologies for organic contaminated soils and suggests two different strategies for the mitigation of ‘slightly-contaminated’ agricultural soils and the remediation of ‘heavily-contaminated’ soils/sites, respectively. On this basis, directions for future research in this field are suggested.

关键词: organic contaminated soil     mitigation     remediation     bioavailability    

Microplastic and Nanoplastic Pollution: Characterization, Transport, Fate, and Remediation Strategies

《环境科学与工程前沿(英文)》 2022年 第16卷 第1期   页码 12-12 doi: 10.1007/s11783-021-1446-y

摘要: Plastics continues to have a critical and essential role in human society such as food packing, product packages and building materials. In the meantime, it has been recognized as a global sustainability priority to study and mitigate pollution of plastics and the associated unknown impacts from ultrafine plastic particles. Microplastic (<5 mm) particles, for instance, have been detected in the aquatic environment globally and have raised scientific interests and environmental concerns. Microplastics (MPs) can enter rivers through a variety of pathways (e.g., wastewater effluent, breakdown of plastic debris) and can negatively impact aquatic organisms through both direct injection with food and indirect contamination from absorbed toxins. MPs can absorb heavy metals, pathogens, and organic contaminants, mainly persistent organic pollutants (POPs) that can be ingested by organisms and introduced into the food web. Meanwhile, MPs may also release potentially toxic substances (e.g., plasticizers, flame retardants and antimicrobial agents) during weathering and degradation. An increasing number of papers are being published during the last years related to the effects of MPs as well as with synergistic effects when associated with MPs and their byproducts such as nanometer sized plastics or nanoplastics. This special issue successfully garnered a collection of research articles that addressed various topics of microplastic or nanoplastic pollution, characteristic, and environmental fate in the water environment. Particularly, this issue reported the seasonable occurrence and distribution of microplastics in different regions (e.g., China and India) from high-latitude nature reserve to sediments and coastal marine environments. Moreover, new sampling and analytical methodologies (e.g., fluorescent labeling) to identify MPs in diver matrixes (e.g., wastewater, sediment, and biota) are critically reviewed. The information is critical for scientists, business leaders, legislators, and the public are to explore and develop solutions that lessen society’s plastic footprint. We thank all authors, reviewers, and editorial staff of FESE for their efforts and contributions to this special issue. Guest Editors: Wen Zhang Department of Civil and Environmental Engineering, New Jersey Institute of Technology (wen.zhang@njit.edu) Melissa Pasquinelli College of Natural Resources, North Carolina State University (melissa_pasquinelli@ncsu.edu) Yang Li School of the Environment Beijing Normal University (liyang_bnu@bnu.edu.cn)

Bismuth oxide-related photocatalysts in green nanotechnology: A critical analysis

Andrea P. Reverberi, P.S. Varbanov, M. Vocciante, B. Fabiano

《化学科学与工程前沿(英文)》 2018年 第12卷 第4期   页码 878-892 doi: 10.1007/s11705-018-1744-5

摘要: A survey addressing the uses of bismuth oxide in photocatalysis is presented. The richness of literature on such a specific topic proves the growing importance of this compound as a valid tool in pollution abatement and environmental decontamination. Many research groups have focused their activity on how to improve the photocatalytic properties of this semiconductor and several solutions have been adopted in the synthesis method, often based on wet-chemical processes. The impressive development of nanoscience helped in understanding and identifying process variables and operative conditions aiming at optimizing the yield of this promising photocatalytic material in the utilization of solar energy.

关键词: photocatalysis     visible light     bismuth compounds     nanotechnology     environmental remediation     decontamination     pollution abatement    

Advances in Fe(III) bioreduction and its application prospect for groundwater remediation: A review

Yu Jiang, Beidou Xi, Rui Li, Mingxiao Li, Zheng Xu, Yuning Yang, Shaobo Gao

《环境科学与工程前沿(英文)》 2019年 第13卷 第6期 doi: 10.1007/s11783-019-1173-9

摘要: Microbial Fe(III) reduction is closely related to the fate of pollutants. Bioavailability of crystalline Fe(III) oxide is restricted due to thermodynamics. Amorphous Fe(III) (hydro)oxides are more bioavailable. Enrichment and incubation of Fe(III) reducing bacteria are significant. Microbial Fe(III) reduction is a significant driving force for the biogeochemical cycles of C, O, P, S, N, and dominates the natural bio-purification of contaminants in groundwater (e.g., petroleum hydrocarbons, chlorinated ethane, and chromium). In this review, the mechanisms and environmental significance of Fe(III) (hydro)oxides bioreduction are summarized. Compared with crystalline Fe(III) (hydro)oxides, amorphous Fe(III) (hydro)oxides are more bioavailable. Ligand and electron shuttle both play an important role in microbial Fe(III) reduction. The restrictive factors of Fe(III) (hydro)oxides bioreduction should be further investigated to reveal the characteristics and mechanisms of the process. It will improve the bioavailability of crystalline Fe(III) (hydro)oxides and accelerate the anaerobic oxidation efficiency of the reduction state pollutants. Furthermore, the approach to extract, culture, and incubate the functional Fe(III) reducing bacteria from actual complicated environment, and applying it to the bioremediation of organic, ammonia, and heavy metals contaminated groundwater will become a research topic in the future. There are a broad application prospects of Fe(III) (hydro)oxides bioreduction to groundwater bioremediation, which includes the in situ injection and permeable reactive barriers and the innovative Kariz wells system. The study provides an important reference for the treatment of reduced pollutants in contaminated groundwater.

关键词: Microbial Fe(III) reduction     Mechanism     Groundwater contamination     Remediation    

Microbial remediation of aromatics-contaminated soil

Ying Xu, Ning-Yi Zhou

《环境科学与工程前沿(英文)》 2017年 第11卷 第2期 doi: 10.1007/s11783-017-0894-x

摘要: Aromatics-contaminated soils were successfully remediated with adding single strains. Bacterial or fungal consortia were successfully used in the cases of bioaugmentation. Microbes combined with chemical or biological factors increase remediation efficiency. The environmental factors had appreciable impacts on the bioaugmentation. Aromatics-contaminated soil is of particular environmental concern as it exhibits carcinogenic and mutagenic properties. Bioremediation, a biological approach for the removal of soil contaminants, has several advantages over traditional soil remediation methodologies including high efficiency, complete pollutant removal, low expense and limited or no secondary pollution. Bioaugmentation, defined as the introduction of specific competent strains or consortia of microorganisms, is a widely applied bioremediation technology for soil remediation. In this review, it is concluded which several successful studies of bioaugmentation of aromatics-contaminated soil by single strains or mixed consortia. In recent decades, a number of reports have been published on the metabolic machinery of aromatics degradation by microorganisms and their capacity to adapt to aromatics-contaminated environments. Thus, microorganisms are major players in site remediation. The bioremediation/bioaugmentation process relies on the immense metabolic capacities of microbes for transformation of aromatic pollutants into essentially harmless or, at least, less toxic compounds. Aromatics-contaminated soils are successfully remediated with adding not only single strains but also bacterial or fungal consortia. Furthermore several novel approaches, which microbes combined with physical, chemical or biological factors, increase remediation efficiency of aromatics-contaminated soil. Meanwhile, the environmental factors also have appreciable impacts on the bioaugmentation process. The biostatistics method is recommended for analysis of the effects of bioaugmentation treatments.

关键词: Aromatics-contaminated soil     Bacteria     Bioaugmentation     Bioremediation     Fungi    

Stabilization-based soil remediation should consider long-term challenges

Zhengtao Shen, Zhen Li, Daniel S. Alessi

《环境科学与工程前沿(英文)》 2018年 第12卷 第2期 doi: 10.1007/s11783-018-1028-9

摘要: Soil remediation is of increasing importance globally, especially in developing countries. Among available remediation options, stabilization, which aims to immobilize contaminants within soil, has considerable advantages, including that it is cost-effective, versatile, sustainable, rapid, and often results in less secondary pollution. However, there are emerging challenges regarding the long-term performance of the technology, which may be affected by a range of environmental factors. These challenges stem from a research gap regarding the development of accurate, quantitative laboratory simulations of long-term conditions, whereby laboratory accelerated aging methods could be normalized to real field conditions. Therefore, field trials coupled with long-term monitoring are critical to further verify conditions under which stabilization is effective. Sustainability is also an important factor affecting the long-term stability of site remediation. It is hence important to consider these challenges to develop an optimized application of stabilization technology in soil remediation.

关键词: Stabilization     Soil remediation     Long-term     Trace metals    

Nanosized magnetite in low cost materials for remediation of water polluted with toxic metals, azo- and

María Fernanda HORST,Verónica LASSALLE,María Luján FERREIRA

《环境科学与工程前沿(英文)》 2015年 第9卷 第5期   页码 746-769 doi: 10.1007/s11783-015-0814-x

摘要: Nanosized magnetite has emerged as an adsorbent of pollutants in water remediation. Nanoadsorbents include magnetic iron oxide and its modifiers/stabilizers, such as carbon, silica, clay, organic moieties (polymers, aminoacids, and fatty acids) and other inorganic oxides. This review is focused on the recent developments on the synthesis and use of magnetic nanoparticles and nanocomposites in the treatment of contaminated water. The emphasis is on the influence of the iron oxide modifiers on some properties of interest such as size, BET area, and magnetization. The characteristics of these nanomaterials are related to their ability to eliminate heavy metal ions and dyes from wastewater. Comparative analysis of the actual literature was performed aiming to present the magnetic material, its preparation methodology and performance in the elimination of the selected pollutants. Vast information has been properly summarized according to the materials, their properties and preferential affinity for selected contaminants. The mechanisms governing nanomaterial’s formation as well as the interactions with heavy metals and dyes have been carefully analyzed and associated to their efficiency.

关键词: nanomagnetite     water remediation     toxic metals     dyes     supported magnetite    

标题 作者 时间 类型 操作

Applications of hollow nanomaterials in environmental remediation and monitoring: A review

Yuankai ZHANG,Zhijiang HE,Hongchen WANG,Lu QI,Guohua LIU,Xiaojun ZHANG

期刊论文

Property-performance relationship of core-shell structured black TiO photocatalyst for environmentalremediation

期刊论文

Review on design and evaluation of environmental photocatalysts

Xin Li, Jun Xie, Chuanjia Jiang, Jiaguo Yu, Pengyi Zhang

期刊论文

Hydrophilic modification of poly(aryl sulfone) membrane materials toward highly-efficient environmentalremediation

期刊论文

Optimizing iodine capture performance by metal–organic framework containing with bipyridine units

期刊论文

Reactivity of Pyrogenic Carbonaceous Matter (PCM) in mediating environmental reactions: Current knowledge

Wenqing Xu, Mark L. Segall, Zhao Li

期刊论文

Photo-induced surface frustrated Lewis pairs for promoted photocatalytic decomposition of perfluorooctanoic acid

期刊论文

An emerging market for groundwater remediation in China: Policies, statistics, and future outlook

Deyi Hou, Guanghe Li, Paul Nathanail

期刊论文

Mitigation and remediation technologies for organic contaminated soils

Lizhong ZHU, Li LU, Dong ZHANG

期刊论文

Microplastic and Nanoplastic Pollution: Characterization, Transport, Fate, and Remediation Strategies

期刊论文

Bismuth oxide-related photocatalysts in green nanotechnology: A critical analysis

Andrea P. Reverberi, P.S. Varbanov, M. Vocciante, B. Fabiano

期刊论文

Advances in Fe(III) bioreduction and its application prospect for groundwater remediation: A review

Yu Jiang, Beidou Xi, Rui Li, Mingxiao Li, Zheng Xu, Yuning Yang, Shaobo Gao

期刊论文

Microbial remediation of aromatics-contaminated soil

Ying Xu, Ning-Yi Zhou

期刊论文

Stabilization-based soil remediation should consider long-term challenges

Zhengtao Shen, Zhen Li, Daniel S. Alessi

期刊论文

Nanosized magnetite in low cost materials for remediation of water polluted with toxic metals, azo- and

María Fernanda HORST,Verónica LASSALLE,María Luján FERREIRA

期刊论文